Block Orthogonal Polynomials: I. Definitions and Properties
نویسنده
چکیده
Constrained orthogonal polynomials have been recently introduced in the study of the HohenbergKohn functional to provide basis functions satisfying particle number conservation for an expansion of the particle density. More generally, we define block orthogonal (BO) polynomials which are orthogonal, with respect to a first Euclidean scalar product, to a given i-dimensional subspace Ei of polynomials associated with the constraints. In addition, they are mutually orthogonal with respect to a second Euclidean scalar product. We recast the determination of these polynomials into a general problem of finding particular orthogonal bases in an Euclidean vector space endowed with distinct scalar products. An explicit two step Gram-Schmidt orthogonalization (G-SO) procedure to determine these bases is given. By definition, the standard block orthogonal (SBO) polynomials are associated with a choice of Ei equal to the subspace of polynomials of degree less than i. We investigate their properties, emphasizing similarities to and differences from the standard orthogonal polynomials. Applications to classical orthogonal polynomials will be given in forthcoming papers. PACS numbers: 02.10.Ud, 02.30.Gp, 02.30.Mv, 21.60.-n, 31.15.Ew, 71.15.Mb
منابع مشابه
ar X iv : m at h - ph / 0 60 60 36 v 2 1 2 M ar 2 00 7 Block orthogonal polynomials : I . Definitions and properties
Constrained orthogonal polynomials have been recently introduced in the study of the HohenbergKohn functional to provide basis functions satisfying particle number conservation for an expansion of the particle density. More generally, we define block orthogonal (BO) polynomials which are orthogonal, with respect to a first Euclidean inner product, to a given i-dimensional subspace Ei of polynom...
متن کاملSolving singular integral equations by using orthogonal polynomials
In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...
متن کاملNumerical solution of delay differential equations via operational matrices of hybrid of block-pulse functions and Bernstein polynomials
In this paper, we introduce hybrid of block-pulse functions and Bernstein polynomials and derive operational matrices of integration, dual, differentiation, product and delay of these hybrid functions by a general procedure that can be used for other polynomials or orthogonal functions. Then, we utilize them to solve delay differential equations and time-delay system. The method is based upon e...
متن کاملBlock Orthogonal Polynomials: II. Hermite and Laguerre Standard Block Orthogonal Polynomials
The standard block orthogonal (SBO) polynomials Pi;n(x), 0 ≤ i ≤ n are real polynomials of degree n which are orthogonal with respect to a first Euclidean scalar product to polynomials of degree less than i. In addition, they are mutually orthogonal with respect to a second Euclidean scalar product. Applying the general results obtained in a previous paper, we determine and investigate these po...
متن کاملRecurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials
Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$ x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x),$$ we find the coefficients $b_{i,j}^{(p,q,ell ,,r)}$ in the expansion $$ x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell }y^{r}f^{(p,q)}(x,y) =sumli...
متن کامل